Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 336: 122091, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670765

RESUMO

In this study, konjac glucomannan (KG) was incorporated in high acyl gellan (HAG) and low acyl gellan (LAG) hydrogels in different ratios. The addition of KG increased pseudoplasticity and thermal hysteresis values of the hydrogels. Improvement in elasticity and water holding capacity (WHC) was observed in KG-LAG hydrogels. The highest WHC (98.5 %) was observed for 1K1H (KG:HAG = 1:1) and 3K7L (KG:LAG = 3:7) hydrogels. The crystallinity of the composite hydrogels was lower than hydrogels prepared from individual biopolymers. The hydrogels exhibited a rough surface with minute pores in the cross-section, due to the aggregation of glucomannan on the gellan network in the composite hydrogels. While HAG and 1K1H hydrogels exhibited greater swelling at low pH (3.0), LAG and 3K7L exhibited greater swelling at high pH (11.0). At pH 7.0, the hydrogels exhibited swelling indices >300 %. Incorporation of 1K1H hydrogel at 10 % (w/w) in sandy loamy soil under semi-arid conditions increased the germination of fenugreek microgreens from 60 % to 80 % on the 15th day. Furthermore, the moisture evaporation rate of the soil reduced from 35 % to <15 %, positively impacting the physicochemical properties of the microgreens. The composite hydrogels were successful in achieving a controlled release of phosphate fertilizer.

2.
Int J Biol Macromol ; 257(Pt 2): 128689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092100

RESUMO

In this study, a composite hydrogel consisting of pea protein and konjac glucomannan (KG) was fabricated using three approaches, namely neutral, salt-set, and alkaline gelation. Hydrogels made from pea protein were brittle and weak. The addition of KG improved the elasticity and water holding capacity of the pea protein hydrogels. Concomitantly, a decrease in syneresis rate and swelling of the composite hydrogels was observed. The alkaline-set hydrogels exhibited the highest resilience to strain. Thixotropicity was found to be less pronounced for salt-set hydrogels. Sulphate had a greater positive effect on the structural recovery and negative effect on hysteresis area than chloride due to the greater salting-out effect of the sulphates. The addition of KG facilitated the formation of an interconnected structure with limited mobility of biopolymer chains. A sharp increase in G' and G" during the temperature ramp indicated the predominance of hydrophobic interactions towards the aggregation of biopolymers. The infrared spectra of the hydrogels revealed a change in secondary structure of proteins on addition of KG. A controlled in vitro release of riboflavin was observed in neutral and salt-set hydrogels. The alkaline-set hydrogels exhibited a prolonged gastric retention time, thereby establishing in vitro antacid activity in the gastric environment.


Assuntos
Hidrogéis , Proteínas de Ervilha , Hidrogéis/química , Mananas/química , Elasticidade
3.
Int J Biol Macromol ; 227: 938-951, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563809

RESUMO

Sustainable and "green" technologies, such as cold plasma are gaining attention in recent times for improving the functional properties of hydrocolloids. Chemical modifications of hydrocolloids require several chemicals and solvents, which are not environment-friendly. The major objective of the study was to understand the impact of plasma treatment (170-230 V|15 min) on the rheology of film-forming solutions (FFS) and the barrier properties of pectin films. The film-forming properties of plasma-treated pectin were investigated in the presence of two plasticizers, namely, glycerol and polyethylene glycol (PEG) 400. The effects of cross-linking by CaCl2 on the rheology of FFS and barrier properties of the films were discussed. A voltage-dependent decrease in the apparent viscosity of FFS was observed. The viscoelastic properties of the FFS were enhanced due to cross-linking. Glycerol exhibited a better plasticizing effect than PEG. Cross-linking and increasing voltage synergistically contributed towards lower oxygen and carbon dioxide transmission rates. The moisture sorption rate and capacity of the films increased with the voltage of the treatment. The resistance to extension of the films made from glycerol and PEG decreased with voltage, with no significant change in extensibility. On the other hand, the cross-linking by Ca2+ and plasma treatment enhanced the resistance to extension for the films made from both the plasticizers. While the increasing hydrophilicity and opacity of the films were a major drawback of plasma modification, the increase in UV barrier property of the films was an advantage of the modification.


Assuntos
Malus , Gases em Plasma , Glicerol/química , Plastificantes/química , Pectinas/química , Reologia
4.
Food Res Int ; 161: 111849, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192977

RESUMO

Subcritical water is a "green" method of extraction and modification of pectin being explored in recent times. While the conventional acid extraction degrades the side chains and produces homogalacturonan (HG)-rich pectic polysaccharides, subcritical water extraction preserved the hairy region, namely the rhamnogalacturonan-I (RG-I) region of the pectin. However, higher temperatures (usually greater than 160 °C) degraded the RG-I and HG motifs, producing pectic oligosaccharides. A high selectivity towards pectic polysaccharides with a low protein content was observed during extraction by subcritical water. This can be majorly attributed to the heat-induced denaturation of proteins. Although the bioactive and emulsifying properties were more remarkable for subcritical water-extracted pectin, the rheological properties such as elasticity were negatively impacted. Apart from extraction, subcritical water can also be employed to aid the breakdown of pectic polysaccharides into oligosaccharides. The addition of several organic acids in subcritical water can help form pectic fragments, which are otherwise possible only by adding a cocktail of enzymes. For instance, carboxylic acids in subcritical water media can have a similar action to endo-polygalacturonase on the homogalacturonan backbone. It is worthwhile to note that intense extraction or modification conditions can form advanced glycation end products, which are undesirable and should be monitored throughout the modification process. Several thermodynamic and kinetic models can be employed to predict the breakdown of the pectin structure in subcritical conditions. Finally, this study suggests a strategy for obtaining the optimum process parameters, namely, temperature, duration, and the liquid:solid ratio for achieving maximum yield and the desired structure of the pectic polysaccharide.


Assuntos
Poligalacturonase , Água , Ácidos Carboxílicos , Produtos Finais de Glicação Avançada , Oligossacarídeos , Pectinas/química , Poligalacturonase/metabolismo , Polissacarídeos , Ramnogalacturonanos , Água/química
5.
Carbohydr Polym ; 278: 118967, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973782

RESUMO

Modification of hydrocolloids to alter their functional properties using chemical methods is well documented in the literature. There has been a recent trend of adopting eco-friendly and "green" methods for modification. Pectin, being a very important hydrocolloid finds its use in various food applications due to its gelling, emulsifying, and stabilizing properties. The adoption of various "green" methods can alter the properties of pectin and make it more suitable for incorporation in food products. The novel approaches such as microwave and pulsed electric field can also be utilized for solvent-free modification, making it desirable from the perspective of sustainability, as it reduces the consumption of organic chemicals. Pectic oligosaccharides (POSs) produced via novel approaches are being explored for their biological properties and incorporation in various functional foods. The review can help to set the perspective of potential scale-up and adoption by the food industry for modification of pectin.


Assuntos
Pectinas/química , Adoção , Eletricidade , Indústria Alimentícia , Micro-Ondas , Oligossacarídeos/química
6.
J Food Biochem ; 46(3): e13902, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34467553

RESUMO

The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.


Assuntos
COVID-19 , Antioxidantes , Suplementos Nutricionais , Alimento Funcional , Humanos , Pandemias/prevenção & controle
7.
Compr Rev Food Sci Food Saf ; 21(1): 499-540, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766715

RESUMO

Pulsed light (PL) is a polychromatic radiation-based technology, among many other non-thermal processing techniques. The microbiological lethality of the PL technique has been explored in different food matrices along with their associated mechanisms. Pasteurization of fruit juice requires a 5-log cycle reduction in the resistant pathogen in the product. The manufacturers look toward achieving the microbial safety and stability of the juice, while consumers demand high-quality juice. Enzymatic spoilage in fruit juice is also a crucial factor that needs attention. The retailers want the processed juice to be stable, which can be achieved by inactivating the spoilage enzymes and native microflora inside it. The present review argued about the potential of PL technology to produce a microbiologically safe and enzymatically stable fruit juice with a minimal loss in bioactive compounds in the product. Concise information of factors affecting the PL treatment (PLT), primary inactivation mechanism associated with microorganisms, enzymes, the effect of PLT on various quality attributes (microorganisms, spoilage enzymes, bioactive components, sensory properties, color), and shelf life of fruit juices has been put forward. The potential of PL integrated with other non-thermal and mild thermal technologies on the microbial safety and stability of fruit juices has been corroborated. The review also provides suggestions to the readers for designing, modeling, and optimizing the PLT and discusses the use of various primary, secondary kinetic models in detail that have been utilized for different quality parameters in juices. Finally, the challenges and future need associated with PL technology has been summarized.


Assuntos
Sucos de Frutas e Vegetais , Pasteurização , Manipulação de Alimentos/métodos , Pasteurização/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...